

Moore in der Spekteniederung

Bearbeitung:

Christian Klingenfuß Diana Möller **Christian Heller Tina Thrum Jutta Zeitz**

Humboldt-Universität zu Berlin Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften Fachgebiet Bodenkunde und Standortlehre

Juni 2015

Forschungsprojekt im Umweltentlastungsprogramm II Berlin



Investition in Ihre Zukunft!

Schutzstatus		-						
Ökologischer Moortyp (primär)		eutroph-subneutral						
Ökologischer Moortyp (sekundär, aktuell)		eutroph-subneutral						
Hydrogenetischer Moortyp		Verlandungsmoor; Versumpfungsmoor						
Entwicklungszieltyp		Reichmoor, bewaldet						
Moorfläche		5,2 ha						
Moormächtigkeit (Zentrum)		> 3,3 m (bis 7,0 m laut Hinweisschild vor Ort)						
Bodentyp(en), dominant		reliktisches Normerdniedermoor-Normniedermoor						
C-Speicher [C _{org}]	• gesamt	> 6.042 t	_	> 1.157 t/ha				
	• gefährdet	78 t	_	15 t/ha				
	• labil u. gefährdet	9 t		2 t/ha				
CO ₂ -Speicher [CO ₂ -Äquivalente]	• gesamt	> 22.175 t	_	> 4.248 t/ha				
	• gefährdet	287 t	_	55 t/ha				
	• labil u. gefährdet	34 t	_	6 t/ha				

Die Spekte folgte einst einer vermoorten Niederung im Berliner Urstromtal, die sich vom Havelland bis Spandau erstreckte. Das natürliche Fließgewässer wurde zum Entwässerungsgraben ausgebaut und die Moore im Rahmen von Siedlungsbau bis auf Restflächen zerstört und überbaut. Im Süden sind übersandete hochzersetzte, flache Torfrelikte zu finden, während im Norden zwei tiefere Verlandungskerne liegen, deren Zentren z. T. überstaut sind. Der obere Profilabschnitt ist holzreich und mittel bis stark zersetzt. Unterhalb von 50–90 cm befindet sich gering zersetzter (Braunmoos-)Radizellentorf, der ein ursprünglich mesotrophes Milieu anzeigt und dessen Herausbildung vermutlich mit dem mittelalterlichen Grundwasseranstieg in Verbindung steht.

Der Entwicklungszieltyp Reichmoor, bewaldet, trägt den veränderten, eutrophen Standortbedingungen mit Gehölzentwicklung Rechnung. Ein Mosaik aus eutrophen Rieden und Feuchtwälder bzw. –gebüschen ist eine realistische Entwicklungsperspektive. Hinsichtlich der überstauten Moorböden ist das mittelfristige Ziel Torfwachstum mit CO₂- und Nährstoffbindung.

Klimaschutzleistung

C-Speicher gesamt

C_{org} [t/ha] ≤ 900 hoch $> 900 - \le 1800$ sehr hoch > 1800 extrem hoch

C-Speicher gefährdet

C org gef. [t/ha] gering mittel > 0 - ≤ 200 > 200 hoch

C-Speicher labil u. gefährdet

C_{hwe} [t/ha]

0 gering > 0 - ≤ 25 mittel > 25 hoch

Lebensraumleistung

Wasserstufe aus Boden und Vegetation

Wasserstufe

ſ				l
I				l
Ì				l

≥ 4+ gut 3+ mittel < 2+ schlecht

Abwertung Biotopstruktur

nicht standortgerechte Gehölzbestände (Deckung > 30 %) und/oder Moor-Degenerationsstadien

Trophiebewertung

Nährstoffüberfrachtung


Stofffilterleistung

Wasserstufe aus Boden und Vegetation

Wasserstufe 5+ 4+, 4+/5+

Torfbildung Torferhaltung Torfzehrung

≤ 3+ Trinkwassergefährdung

Eutrophierungsgefährdung

für unterliegende Gewässer

Wasserretentionsleistung

Retentionsraum für Hochwasser Lage im Überflutungsbereich (HQ 100)

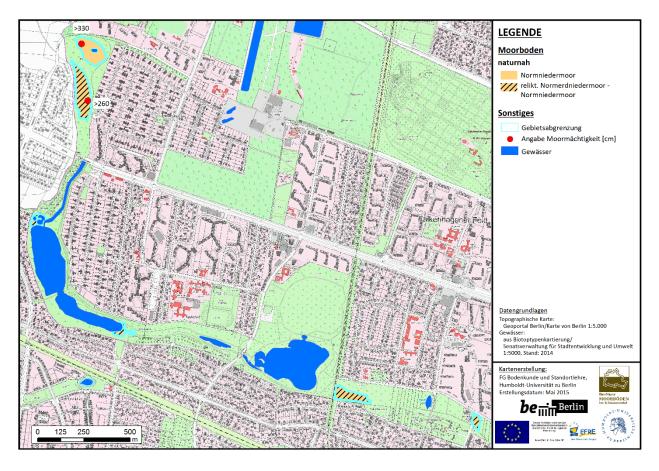
< 50 % der gesamten Moorgebietsfläche ≥ 50 % der gesamten Moorgebietsfläche

Retentionspotenzial für Landschaftswasserhaushalt Wasserretention

hoch mittel gering

Kühlungsleistung

Wasserstufe aus Boden und Vegetation Wasserstufe



≥ 3+ gut 2+/1 mittel 2schlecht

Stadtklimatische Relevanz

liegt nicht im Kaltluftaustauschgebiet und/oder 200 m-Siedlungspuffer

Moorbodenkarte mit Aufnahmepunkten und Moormächtigkeit.